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The strong-interaction theory developed in Ganatos, Weinbaum & Pfeffer (1  9804 
and Ganatos, Pfeffer & Weinbaum (1980b) for the normal and parallel creeping 
motion of a sphere of arbitrary size between two infinite plane-parallel walls is applied 
to several particle-boundary interaction problems of long-standing interest. The first 
highly accurate solutions are presented for the slip and angular velocity of a neutrally 
buoyant sphere carried by the fluid in a Couette or Poiseuille channel flow and the 
gravitational settling of a non-neutrally buoyant sphere in an inclined channel. The 
latter problem clearly illustrates the non-isotropy of the frictional resistance tensor 
on the particle motion. The solutions for the fluid velocity field exhibit an induced 
circulation extending to infinity fore and aft of the sphere for a neutrally buoyant 
sphere in Couette flow and an induced back-flow ahead of the sphere for the Poiseuille 
flow geometry. Approximate but highly accurate solutions are presented for small 
gap widths between a sphere and the neighbouring boundary, which take account 
of the influence of the second wall. 

1. Introduction 
In  two recent papers the authors have shown that it is possible to extend the 

three-dimensional boundary collocation solution technique first introduced by Gan- 
atos, Pfeffer & Weinbaum (1978) for strongly interacting spheres in unbounded flow 
at  low Reynolds number to simple bounded-flow problems and have obtained 
analytical-numerical solutions for a sphere of arbitrary size moving between infinite 
parallel boundaries. I n  the first paper (Ganatos, Weinbaum & Pfeffer 1 9 8 0 ~ )  solutions 
were obtained for the force on a sphere translating perpendicular to  the confining 
walls. In  the second paper (Ganatos, Pfeffer & Weinbaum 1980b) solutions are 
presented for the force and torque on a sphere that is translating parallel to the walls, 
rotating about an axis parallel to the walls, or which is held rigidly in place in a 
two-dimensional Poiseuille or simple shear flow. The important features of these 
solutions are that the no-slip boundary conditions on the confining walls are satisfied 
by exact analytic methods for a sphere of arbitrary size and position and the 
boundary conditions on the surface of the sphere are satisfied to any order of accuracy 
using a truncated boundary collocation series of fundamental solutions for the 
spherical disturbance. I n  this manner, one is able to  obtain the first three-dimensional 
strong-interaction solutions for a particle with closely spaced confining walls in the 
creeping-motion regime. 

I n  the present paper, the results for the force and torque coefficients presented in 
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Ganatos et al. (1980a, b )  are used to obtain solut,ions for several flow problems of 
long-standing interest. These include the local translational and rotational velocities 
of a neutrally buoyant sphere in zero-drag motion in a Couette or Poiseuille channel 
flow and the gravitational sett'ling of a non-neutrally buoyant sphere in an inclined 
channel, The zero-drag motions are of interest in a variety of two-phase-flow 
applications where dispersed small particles are carried along by the fluid, e.g. a 
contaminant particle in a lubricating bearing. Biological applications include t'he flow 
of the cellular components of blood in the microvasculature and osmobic phenomena 
associated with the reflection of solute molecules passing through the small extra- 
cellular channels between adjacent cells in a cell layer. Prior to the present analysis, 
much of the existing theoretical modelling had been based on the widely used 
weak-int>eraction met,hod-of-reflection technique. Highly accurate approximate 
lubrication-type solutions are also presented herein for small gap widths (less than 
a tenth of a sphere radius), which take account of the influence of the more-distant' 
boundary. 

For more than a decade, boundary collocation methods have been used for treating 
the zero-Reynolds-number strong interaction between closely spaced spheres and 
spheroids or between spheres and confining walls. By analytically exact we mean that 
each of the terms in the solution is an exact solut'ion of the governing differential 
equation and that the infinite summation of terms representing each spheroid 
converges to its exact description. All the early studies were confined to periodic or 
infinite-domain bounded and unbounded flows where the existence of an axisymmetric 
stream funct,ion permitted a relatively simple description of the velocity field and no 
direct treatment of the Navier-Stokes equation for the pressure was required. Some 
of the more important of the early papers include the flow past coaxial clusters of 
spheroids (Gluckman, Pfeffer & Weinbaum 1971), motion of an infinite periodic array 
of spheres along the axis of a circular cylinder (Wang & Skalak 1969), and the 
arbitrary axial motion of two or more spheres in an infinite tube of circular cross-section 
(Leichtberg, Pfeffer & Weinbaum 1976). The extension of this analysis to multiple- 
domain problems, such as the flow through a finite-length circular pore or a sphere 
approaching an orifice along its centreline, does require an explicit treatment of t,he 
pressure field in the matching of the stress tensor a t  the interface between regions 
and is described in Dagan, Weinbaum & Pfeffer (1982a, b ) .  Exact three-dimensional 
boundary collocation techniques require a different approach, which is described in 
detail in Ganatos et al. (1978, 1980a, b).  We shall give a very brief summary of this 
solution procedure here in the context of the particular flow configurations to be 
studied in the present paper. 

The velocity disturbance produced by each particle or boundary in the flow field 
is represented by an infinite series or Fourier integral of all the simply separable 
solutions of the Stokes-flow governing equations in the appropriate coordinate 
system. For three-dimensional flows these fundamental solutions are obtained by first 
writing a general solution of Laplace's equation for the pressure field and then solving 
the Navier-Stokes and continuity equations for the three velocity components in 
terms of the pressure using three scalar or vector potential functions. For a spherical 
boundary these fundamental solutions are simply Lamb's spherical harmonic func- 
tions. Because of the linearity of the governing equations and boundary conditions, 
the total solution for the velocity field is a superposition of the fundamental solutions 
for all spheres and confining boundaries. The no-slip boundary conditions are first 
satisfied on t,he confining boundaries of infinite extent. This step must be performed 
analytically since collocation procedures cannot easily be applied to such boundaries. 
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For planar boundaries, as in the present application, this step involves rewriting the 
spherical disturbances in terms of rectangular coordinates and then performing 
analytically a double Fourier inversion of the spherical disturbances that are 
felt on the confining boundaries. This procedure leads to closed-form expressions for 
the Fourier spectral functions describing the wall disturbance in terms of the 
unknown constants in the spherical-harmonic series. I n  this manner, the total 
solution for the velocity field is reduced to an infinite series for each velocity 
component containing three sets of unknown coefficients, which exactly satisfies the 
no-slip boundary conditions on all the confining walls independently of the value of 
the spherical harmonic coefficients. These coefficients are determined by a collocation 
procedure in which the infinite series are truncated and the three no-slip boundary 
conditions are satisfied a t  discrete points on the surface of each sphere. Because the 
fundamental separable solutions for each particle and boundary in the appropriate 
coordinate system provide a good description of the disturbance produced by that 
body and because the method satisfies the no-slip boundary conditions on all the 
particles and boundaries simultaneously rather than in an iterative fashion, as in the 
method of reflections, the method converges quickly to the exact solution as the 
number of collocation points is increased. 

The accuracy of the converged collocation solutions have been tested in Ganatos 
et al. (1980a, b )  by detailed comparison with the exact bipolar coordinate solutions 
of Brenner (1961) for the motion of a sphere perpendicular to  a single plane wall and 
Goldman, Cox & Brenner (1967a, b )  for the drag and torque on a sphere translating 
parallel to  the wall, rotating adjacent to the wall, or in the presence of a shear field. 
I n  all cases the converged collocation solutions for the force and torque coefficients 
were in perfect agreement with the exact solutions for all spacings tested down to a 
gap width of a tenth of a radius. On the other hand, it was found that the first-order 
reflection theory of Ho & Leal (1974) provides reasonable agreement with the 
collocation results for the drag only when the sphere is five or more radii from both 
walls. At closer spacings first-order reflection theory was found to be highly 
inaccurate. For example, the drag on a sphere translating midway between two walls 
in a direction perpendicular to the walls is 40 yo below the true value when the walls 
are spaced two sphere diameters apart and one order-of-magnitude lower a t  a spacing 
of 1.1 diameters. The first-order reflection theory also predicts an erroneous direction 
for the torque on a sphere translating parallel to the walls for certain particle 
positions. Comparison with the classical higher-order method-of-reflection solutions 
of Faxen (1923) also showed that the convergence of the multiple-reflection series 
solutions is poor when the sphere centre is less than two radii from either boundary. 

I n  the present work, strong-interaction solutions are presented for the gravitational 
and zero-drag motion of a sphere in an inclined channel. The paper is presented in 
four sections. Section 2 contains solutions for the general motion of a sphere between 
two walls, including approximate solutions for small fluid gap widths. In  $3 solutions 
are presented for the trajectory of a sphere settling under gravity in an inclined 
channel. Finally, $4 contains solutions for the zero-drag motion of a sphere in 
two-dimensional Poiseuille flow or Couette flow in a channel. 

2. General motion of a sphere in a channel 
Consider the motion of a sphere of radius a in a viscous fluid between two 

plane-parallel walls spaced at a distance of b and c from the sphere centre, as shown 
in figure 1 .  The sphere is translating in an arbitrary direction with velocity U, which 
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has components CTz and CTz, and rotating with angular velocity a, which has only 
one component a,. A unidirectional incident flow V,(z )  may be present in the 
x-direction owing to  an imposed pressure gradient or to  the motion of the upper wall. 

FIGURE 1 .  Geometry of the general flow configuration. 

In  the low-Reynolds-number flow limit, the fluid velocity V must satisfy'the 

pv2v = vp, v.v = 0, (2 .1~1,  b)  

creeping-flow equations 

subject to the boundary conditions 

V = U + n x a C ,  on r = a ,  (2 .2a)  

V = V ,  on z = - b , c  or x-++co, (2.2b) 

where the incident flow field V, is given by 

4(b + c ) ~  
V , ( z )  = [ S ( z + b ) -  (2 .3)  

The first term in (2.3) represents pure Couette flow induced by the motion of the upper 
wall, where the shear rate is S = Vw/(b+c) (see figure 1 ) .  The second term represents 
pure Poiseuille flow, where V, is the undisturbed centreline velocity if the walls are 
stationary. 

Because of the linearity of the governing equations and boundary conditions, the 
velocity field V for the general problem posed by (2.1)-(2.3) may be decomposed into 
five parts: 

where each contribution satisfies the creeping-motion equations (2.1). The contri- 
bution Vi represents the velocity field due to translation of a sphere with velocity 
U, parallel to the walls with no rotation in an otherwise quiescent fluid. V; represents 
the axisymmetric fluid motion induced by a pure translation of the sphere with 
velocity ITz perpendicular to the walls. Vb is the fluid motion produced by a sphere 

v = vt,+vq+v.,+v;+v.,, (2.4) 
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rotating with angular velocity S Z ,  about an axis parallel to the walls in a quiescent 
fluid a t  infinity. The contributions Vg and V$ represent Couette and Poiseuille flow 
respectively past a rigidly held sphere between the two walls. 

The force and torque acting on the particle resulting from the motions described 
by (2.4) may be expressed using nine non-zero resistance coefficients as follows: 

F, = Gnpa[ Ux Px + aRFx + V, Fp, + bSFS,], (2.5) 

F, = 6npaU, Pz, (2.6) 

T, = 8npa2[ UX Tt, + aSZP, + V, q +$ST,]. (2.7) 

Here the pairs (P,, P,), (e, 0 ) ,  (Fx, P,), (Fx, Ti) and (Q, q) are the force and torque 
coefficients corresponding to the motions Vt,, Vt,, Vb, Vg and V$ respectively. The 
torque coefficient corresponding to Vi is zero since this fluid motion is axisymmetric. 
The nine resistance coefficients account for wall effects on the particle and depend 
on the ratio a = d/2a of channel width to particle size and on the particle position 
s = b / d ,  where d = b + c  (see figure 1). Numerical values of Pz have been computed 
to  a high degree of accuracy using the boundary collocation series solution technique, 
and are given in Ganatos et aE. (1980a) and Ganatos (1979). Values of the remaining 
eight coefficients computed by the same technique are given in Ganatos et al. (1980b) 
and Ganatos (1979). 

If the particle is free to rotate about the y-axis, the net torque on the particle is 
zero. Solving (2.7) for the angular velocity s2 and substituting into (2.5), one can 
rewrite (2.5) in the form 

where 

F(a,  s) = -q 
Px q -Fx Tt, ’ 
Fxq-FpP, 
PxTC,-Ff,Tt,’ G(a,  s) = 

(3.8) 

(2.9) 

(2.10) 

(2.11) 

The F ,  G and H function may be computed using (2.9), (2.10) and (2.11) with values 
of the force and torque coefficients contained in Ganatos et al. (1080b)  for b / a  2 1.1.  
At closer particle-to-wall spacings the boundary collocation truncated series solution 
technique used to compute these coefficients becomes too time-consuming since more 
than 20 boundary points are required for an accuracy of 0.1 yo on some of the force 
and torque coefficients. A more expedient approach is to  use an analytic approximation 
in which the exact bipolar solutions in the range 1.0032 < b/a  < 1.1 and lubrication 
formulas for b / a  < 1.0032 of Goldman et al. (1967a, b)  and Cox & Brenner (1967) for 
the various force and torque coefficients describing the motion of a sphere near a single 
plane wall are modified by adding a function of a to  account for the nearly constant 
effects of the more-distant boundary. Thus in the presence of two walls 

F, = (Tty)onewall+B(a), (2.12) 
Ei = ( f i ) o n e  wall + 24(a), 
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FIGURE 2. Variation of (a )  F ,  (b )  G and (c) H drag functions with channel width a and particle 
position s: -, collocation theory for a = const; -----, lubrication theory for a = const; 
- - - - - - - ~ b/a = const. 
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where the functions on the right-hand side of (2.12) are constant for any given channel 
width. These functions are evaluated by matching the lubrication formulas (2.12) 
with the two-wall collocation solutions for the respective force and torque coefficients 
a t  b/a  = 1.1 that are given in Ganatos et al. (1980a, b) .  Thus 

(2.13) 

where the subscript 1.1 indicates that the quantity has been evaluated a t  b/a = 1.1. 
Vnfortunately, a similar procedure cannot be used to determine the limiting 

behaviour of Q and !l’$ as b / a  +l  because these coefficients are undefined for flow 
bounded by a single plane. However, these coefficients converge to finite values as 
b / a  --f 1 and their converged value deviates very little from their value a t  b / a  = 1.1. 
Thus approximate values of these coefficients were obtained by a linear extrapolation 
of the results presented in Ganatos et al. (1980b) to b/a  = 1. The extrapolated data 
is believed to be accurate to about 0.1 yo. 

The variation of F ,  G and H with particle position is shown in figure 2. The curves 
in the range b / a  2 1.1 were obtained using the collocation theory of Ganatos et al. 
(1980a, b ) .  The solid lines show the variation of these functions with particle position 
s a t  various fixed channel widths a. The dashed lines show the effect of the position 
of the wall at z = c for various sphere-to-wall spacings bla. The broken lines for 
b/a < 1.1 are the lubrication-theory results obtained from (2.12) and (2.13) for 
constant a. Evidence of the high accuracy of the lubrication theory is found in the 
continuity of the slope a t  b / a  = 1.1 where the two solutions are matched. 

In  computing the lubrication limits for the F, G and H functions, i t  was found that 
the analytic lubrication formulas given by Goldman et al. (1967a, b )  for the various 
force and torque coefficients describing the motion of a sphere near a single plane wall, 
which are strictly valid only in the range b / a  < 1.0032, could be used in (2.12) and 
(2.13) to represent the one-wall force and torque coefficients in the entire range 
1 < b/a  < 1.1. For example, using this approximation in (2.9) and neglecting 
higher-order terms yields the simple formula 

(2.14) 

where the function C(a) is evaluated by matching (2.14) with the value of F computed 
from the two-wall collocation solutions a t  b/a = 1.1 given in Ganatos et al. (1980a, 
b) .  Results obtained by this formula were found to be virtually indistinguishable from 
those obtained from (2.12) and (2.13). On the other hand, the angular velocity of the 
particle, computed using a similar approximation, showed a discontinuity in slope 
a t  b/a = 1-1. Thus the more-accurate formulas (2.18) and (2.13) were used to compute 
all of the lubrication solutions presented in this paper. 

We next examine special applications of (2.8) that are of practical interest and 
importance, namely the gravitational settling motion and zero-drag motion of a 
sphere in a channel. 

3. Sphere settling under gravity in an inclined channel 
In  this section, solutions are presented for the motion of a sphere settling under 

gravity, in a channel inclined a t  an angle /3 with quicscent fluid a t  infinity. The 
configuration is shown in figure 3, wherc the sphere is released from the position x = 0, 
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2 = zo. A force and torque balance on the particle using (2.5)-(2.7) yields 

P. Ganatos, 8. Weiitbaum and R.  Pfeffer 

6npa[ U, F!! + ai2Fz] + 37a3(ps - p )  g sin p = 0, 

8.1rpa2[ U, Tty + aS2Py] = 0. 

(3.1) 

6 . 1 r p a ~ ~ z ~ z + ~ ~ a 3 ( p , - p ) g c o ~ ~  = 0, ( 3 . 2 )  

(3.3) 

i 

FIGUKE 3. Schematic diagram of a sphere settling under gravity in an inclined channel. 

The solution of (3.1)-(3.3) is conveniently written in terms of the dimensionless 
velocity ratios 

& = Fsinp ,  (3.4) 
[it 

(3 .5 )  

(3.6) 

where CT, = (2a2/9p) (p, - p )  g is bhe terminal settling velocity of an isolated sphere 
in an unbounded medium, and F is given by (2.9) (see figure 2a). 

From (3.4) and (3.5) the trajectory of the settling sphere is given by 

(3.7) 

where the function ffa, z )  is plotted in figure 4 for various channel widths a. The figure 
also shows that for a fixed distance between the sphere and the closer wall 
( z /a  = const) the functionf(a, z )  is relatively insensitive to the position of the second 
wall. 

Figure 5 shows a representative solution for the trajectory of a sphere released at 
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FIGURE 4. Variation off with channel width a and particle location z l d :  -, a = const; - - - - - ,  
z/a = const. 

0 
\ 

FIGURE 5.  Trajectory of a sphere settling under gravity in a channel inclined a t  /3 = 45' (a = 2, 
zo/. = 1ao1). 
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z , / a  = 1.001 in a channel inclined a t  /3 = 45' where the wall spacing is twice the sphere 
diameter (a  = 2 ) .  The dashed vertical line represents the trajectory that the sphere 
would follow in the absence of the walls. The large departure of the actual trajectory 
from the vertical path clearly demonstrates the strong interaction effects of the 
confining walls. For small gap widths the sphere moves nearly parallel to the 
boundary since the resistance to perpendicular motion is much larger than that to 
parallel motion. This behaviour is thus a consequence of the non-isotropy of the fluid 
resistance tensor. The trajectory is symmetric about the midplane of the channel 
because of the reversibility of Stokes flow. 

The lateral drift of the particle can be measured by the drift angle 8 shown in figure 
3. For a horizontal channel (p  = 0) the sphere would fall vertically, since the fluid 
motion is purely axisymmetric and the drift angle is zero. For a vertical channel 
(p = 90') the sphere would again fall vertically, since there is no lateral force acting 
on the sphere in the Stokes-flow limit. This suggests that for a given channel width 
a and particle position z /a  there is an inclination angle p = pmax that  would give the 
maximum drift. To find the maximum-drift angle Om,, the trigonometric relationship 

CTz 

C7z 
tan(P+O) = - 

obtained from figure 3 is combined with (3.7) to give 

tan O 
tan (p+O) = ~ 

f ( a ,  z )  ' 
(3.9) 

Differentiating (3.9) with respect to p while holding a and z constant and setting the 
derivative to  zero yields 

tan/%,,, = (f(a, ,))a. (3.10) 

The corresponding maximum-drift angle is given by 

1 - f  (a, z )  tan@,,, = 
2( f (a ,  2)):. 

(3.1 1 )  

Figure 6 shows a plot of (3.10) and (3.11) as functions of f ( a ,  z ) .  The largest 
maximum-drift angle is found when the particle is in the vicinity of one of the walls 
( f  - 0) and the channel is nearly horizontal. I n  this position the particle is travelling 
almost horizontally perpendicular to the direction of gravity ! As the particle moves 
further away from the walls ( f  + 1 )  the maximum possible drift angle decreases and 
the inclination that gives this maximum drift approaches 45'. Since 0 < f ( a ,  z )  6 1 ,  
the permissible range for pmaX is 0 < Pmax < 45'. 

The angular velocity a!2/UtsinP of the settling sphere has been computed using 
(3.6) as a function of particle position s for representative values of the channel-width/ 
particle-diameter ratio a,  and is shown in figure 7 .  Intuitively, one would expect that 
the sphere should roll along the closer wall. However, figure 7 shows that there is 
a range of particle positions where the sphere rotates in the opposite direction. As 
explained in Ganatos et al. (1980b) this reversal in the direction of rotation occurs 
because of the presence of a separated region of closed streamlines that forms near 
the more-distant wall, thereby inducing a small net torque in the direction opposite 
to what one might intuitively expect. As the sphere approaches one of the walls i t  
tends to roll along the wall as expected, although there is slip between the sphere 
surface and the wall, and its angular velocity increases to a maximum and then 
decreases to zero in the lubrication limit. The maximum angular velocity occurs a t  
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FIGURE 6. Maximum-drift angle Omax and corresponding inclination angle p,,, for a sF--xe settling 
under gravity in an inclined channel. 
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FIGURE 7 .  Angular velocity of a sphere settling under gravity in an inclined channel 
(legend as in figure 2 ) .  
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a fluid gap of about 0.01 sphere radii for a channel width of 10 sphere diameters. As 
the channel width is decreased the maximum value of angular velocity also decreases 
and the maximum occurs a t  a particle position closer to the nearer wall. For a channel 
width of 1.25 diameters the maximum angular velocity occurs a t  a gap of about 
sphere radii. 

4. Zero-drag motion of a sphere in a channel 
This section contains solutions for the motion of a neutrally buoyant sphere in 

Poiseuille or Couette flow in a channel. From (2.5) and (2.7) the conditions of zero 
force and zero torque require 

[ J ,  1: +aQF, + V, 4% + bS F”, = 0, 

lT, Pu + aRTu + JL T$ + &aSTS, = 0. 

(4.1) 

(4.2) 

Note that (2.6) is not needed, since in the absence of inertia and particle deformability 
there is no lateral drift of the sphere relative to  the planar walls. Simultaneous 
solution of these equations for pure two-dimensional Poiseuille flow ( A 9  = 0) yields 

= c:, ri, 
v c  

while for simple shear flow ( V, = 0) 

(4.3) 

(4.6) 

where V, is the wall velocity inducing the shear flow (see figure 1 ) .  Plots of the G 
and H functions representing the translational velocity of the sphere as a function 
of channel width and particle position are shown in figures 2 ( b ,  c ) .  

Of special interest is the local slip velocity J i  of the sphere centre relative to the 
incoming velocity profile : 

For two-dimensional Poiseuille flow 

G 
- 1 ,  K -  

v, h ( 1 - s )  
- _  

while for simple shear flow 

V, H 
vm s 

1. - (4.9) 

Figurcs 8 ( a ,  b )  show a comparison of the collocation solutions for the slip velocity 
with the weak-interaction method-of-reflection results of Ho & Leal (1974) for 
Poiseuille flow and simple shear flow respectively. The weak-interaction theory gives 
surprisingly good results except a t  small particle-to-wall spacings despite large errors 
(mentioned in § 1)  in the individual force and torque coefficients comprising the G and 
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FIGURE 8. Comparison of solutions for the slip velocity of a neutrally buoyant sphere in (a )  Poiseuille 
flow and ( b )  shear flow in a channel: -. collocation theory (present study); - - - - - - ,  Ho & Leal 

(1974), weak-interaction reflection theory. 
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H functions (2.10), (2.1 1). Since the G and H functions involve ratios of the force and 
torque coefficients, the errors in magnitude would appear to cancel one another 
significantly. Nevertheless, the percentage error in the slip velocity in Poiseuille flow 
obtained by the weak-interaction theory can be quite high midway between the two 
walls where the magnitude of the slip velocity is small. 

0 

-0.1 

v, 
v_ 

-0.2 

-0.3 

-0.4 3 

FIGURE 9. Slip velocity of a neutrally buoyant sphere in (a )  Poiseuille flow and ( 6 )  shear flow in 
a channel: c / a  = const. (remaining legend as in figure 2). 

Figure 9 ( a )  shows tfhe slip velocity of a neutrally buoyant sphere in Poiseuille flow 
as a function of wall spacing and particle position. Owing to the symmetry of the 
flow, the slip velocity obeys the relation 

Q(1-8 )  = v,(s). (4.10) 

The slip velocity is negative for all values of s, indicating that the sphere lags the 
fluid at all positions between the two walls. For a given channel width a the sphere 
experiences minimum slip midway between the walls. As the sphere approaches one 
of the walls the G function vanishes (see figure 2b), and from (4.8) the ratio VJVm 
approaches the value - 1, indicating that the sphere sticks to the wall. 

Prior to the development of the present theory it had been customary in the 
treatment of two phase dilute particulate systems, both in pipe and channel flow, 
to estimate the slip between the phases by the centreline solution for the motion of 
a sphere along the centreline of a circular tube, since this was the only accurate 
solution available. It is evident from figure 9 ( a )  that  the slip velocity becomes 
relatively much more important for particles off axis. Similarly, existing solutions 
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for the motion of molecules in hydrophilic membrane pores, which are also based on 
this centreline theory, will significantly underestimate the reflection coefficient of the 
membrane. This coefficient is a measure of the average slip between the phases when 
the statistical spatial distribution of the molecules convected by the water phase is 
known. 

Figure 9 (b)  shows the slip velocity of a neutrally buoyant sphere in Couette flow 
induced by the motion of the boundary at  z = c (see figure 1). Here the slip velocity 
obeys the relation 

Ti(1 - s )  = - K(s). (4.11) 

Thus t>he sphere lags the fluid for 0 < s < 0-5 and leads the fluid for 0.5 < s 6 1. The 
slip velocity is zero midway between the two walls. As the sphere approaches the 
stationary wall the limiting value of the ratio V,/ V,  is - 1 .  The portion of the curves 
- 1.0 < V,/V, < -0.5 is omitted from figure 9 ( b ) .  As the sphere approaches the 
moving wall the ratio V,/ V,  reaches the limiting value (1 - s ) / s  for 0.5 < s 6 1, which 
is labelled c/a = 1 in figure 9 (b). I n  t,his position the sphere is carried by the moving 
wall. The non-symmetry of the curves about the midplane s = 0.5 is due to the 
non-symmetric nature of the flow field V, that  is used as the scaling factor. 

Figure 10 ( a )  shows the angular velocit>y of a neutrally buoyant sphere in Poiseuille 
flow. The angular velocity is zero midway between the walls, as expected from 
symmetry, and increases as the sphere approaches one of the walls. The maximum 
angular velocity occurs immediately adjacent, to the wall, and decreases rapidly to 
zero in the limit as the sphere touches the wall. The maximum value of the angular 
velocity occurs for a channel width a slightly larger than 2 a t  a position where the 
fluid gap between the sphere and the closer wall is about 0.1 sphere radii. 

Figure 10(b )  shows similar results for the angular velocity of a neutrally buoyant 
sphere in Couette flow. For a fixed channel width a the angular velocity is an even 
function symmetric about s = 0-5. As a approaches infinity the angular velocity 
approaches is, which is the angular velocity of a neutrally buoyant sphere in an 
unbounded shear flow. The angular velocity is maximum a t  s = 0.5, and monotonically 
approaches zero as the sphere approaches one of the walls. The portion of the figure 
for 25118 < 065 has been omitted. 

Figure 11 ( a )  shows the fluid velocity field in the plane y = 0 for a neutrally buoyant 
sphere in Couette flow located on the centreline of a channel whose width is 1.5 particle 
diameters. The velocity vectors shown with arrowheads have been drawn to scale and 
show the magnitude and direction of the fluid motion. At points in the flow field where 
the magnitude of the velocity is too small to be visible on the scale shown the direction 
of the fluid motion is shown with the aid of a straight line without an arrowhead. 
The Couette flow is induced by translation of the two walls with equal but opposite 
velocities. Since the sphere is located midway between the walls it experiences only 
a counterclockwise rotational motion and no translation. There are two stagnation 
points in the flow-field midway between the two walls fore and aft of the sphere. 
Between these stagnation points is a region surrounding the sphere where the fluid 
circulates about the sphere in closed streamlines. On the other side of these stagnation 
points fluid is forced across the midplane in a direction opposite to the fluid motion 
induced by the rotating sphere. If the walls are moved further apart the stagnation 
points move away from the sphere. In the absence of the walls the stagnation points 
are not present. 

Figure 11 ( b )  shows t>he ve1ocit)y field for Poiseuille flow past a neutrally buoyant' 
sphere for the same geometry as in figure 11 ( a ) .  The Poiseuille flow is from right to 
left but is shown relative to a reference frame that is translating with the sphere, so 
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that the sphere appears stationary and the walls appear to  be moving to the right. 
The angular velocity of the sphere is zero, as expected owing to the symmetry of the 
flow field. As can be seen in the figure, the large size of the sphere relative to the 
channel width causes a blockage effect, inducing circulations fore and aft of the sphere 
that extend to infinity. On the left side of the sphere, part of the fluid that cannot 
pass through the small gap between the sphere and the walls is diverted to the centre 
of the channel, where it is swept back by the free-stream velocity away from the 
sphere. On the right side of the sphere the flow pattern is reversed. 

In  closing, we wish to mention two related problems in low-Reynolds-number flow 
that are currently under investigation. One is the off-axis motion of a sphere in a 
circular cylinder. An exact solution of this problem is needed as input for accurate 
determination of the osmotic reflection coefficient and diffusion permeability in 
Kedem-Katchalsky membrane filtration theory for cylindrical pores. A separate 
paper is presently being written in which the theory for the parallel channel geometry 
just considered is used to determined these coefficients for pores that are two- 
dimensional slits between adjacent cells in a cell layer. A preliminary version of this 
paper has appeared as Ganatos et al. (19804. The second problem under investigation 
is the tumbling motion of an ellipsoidal particle adjacent to a planar wall. The 
application here is to  describe the motion of a red blood cell near an artery wall. 

The authors wish to thank the National Science Foundation for supporting this 
research under grant ENG 78-22101 and the City University of New York Computer 
Centre for the use of their facilities. 
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